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ABSTRACT

Application of classical windows to time series data is a means of enhancing the

performance of the periodogram. Use of these classical windows results in the broadening

of the spectral mainlobe. A Kalman filter will smooth spectral data by dividing the

periodogram of unwindowed time series data into piecewise constant segments, ideally into

noise-only and signal-only segments. This allows for a more accurate representation of the

mainlobe of the original periodogram. The Kalman filter was modified to alter the filter

parameter during filtering to provide maximum smoothing during the noise-only segment

and maximum sensitivity in the vicinity of the spectral peak of the periodogram. This

modification results in a smoothing of the noise-only portion of the periodogram while

leaving the main spectral peak essentially unaltered. A second modification was made to

substitute the original raw values of the periodogram for the filter estimates during detected

up-transitions while smoothing the noise-only segments in the same manner as in the original

Kalman filter algorithm. This further enhances the preservation of the mainlobe of the

periodogram and lowers the noise floor 1 to 3 dB over that of the original Kalman filter.

These processes were further enhanced by stacking the output periodograms and displaying

them as LOFAR output on the Sun workstation. NCAR graphics grey-toning subroutine is

used to generate the LOFAR displays. I Accession For
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I. INTRODUCTION

A. MAN-MACHINE INTERFACE

As the computational powers of the computer continues to

improve, the ability to process large amounts of data in

relatively short periods of time has also improved. In

addition it is now possible do much of these computations on

desk-top computers in the office or even at home. In the past

the results (i.e., output) of these computations were provided

in the form of paper printout. The individual who must digest

this information and make a decision or draw conclusions from

this data was faced with a serious problem. The value of the

information provided will depend on the ability of the

decision maker to understand what is being presented.

Recen,- advances have made the computer very efficient at

gathering and storing data. The problem is retrieving the

data in a usable form and presenting it to the user (i.e.,

decision maker). [Ref. 1)

The use of computer graphical displays is an effective

solution to this problem. Human information processing

operations depend on the sensory reception of relative

stimulation. The information we are interested in is

contained in this stimuli. This stimuli may be coded in

visual displays and reproduced. The reproductions can be

1



modified by enlargement, amplification, filtering or

enhancement. When indirect sensing a plies, there is a human

factors aspect that must enter into the design of these

displays. [Ref. 2].

The human brain has a vast capacity for non-verbal

perception. This trait can be optimized since computers have

the ability to graphically communicate up to 100,000 times

more effectively than statistical printouts. It is estimated

that the total capacity of the visual channel can be as high

as 30-40 million bits of information per second. This is

equivalent to 48-72 million words per minute, assuming seven

bits per character and five characters per word. Since humans

can not read this fast the effectiveness of graphics over

alpha-numeric printouts is clear [Ref. l:p.5].

Often people can sense many sources of information

directly without much problem. There are however, many

instances where direct sensing is not adequate. Some of these

situations are mentioned below:

1. Information is at or below threshold values that may need
to be amplified by some means (i.e., electronic,
visually, etc...).

2. Information may be to large or massive and require
reduction or consolidation.

3. Information could be embedded in noise that may need to
be filtered out.

4. Stimuli may be of the type that could be better sensed if
converted to some other type of sensory display (e.g.,
graphs or color coding to represent quantitative data).

2



Generally speaking, the information being presented by

displays is either dynamic or static. Dynamic information is

continually changing or may change with time. The randomness

associated with the noise in which a signal may be present is

considered dynamic. Displays may also present static

information. This could be information that does not change

with time of for information that remains constant for some

fixed period of time. We are interested in a dynamic display

in this discussion. For a detailed listing of specific

examples of dynamic and static displays see [Ref. 2:p.49].

Selecting the proper display is very important and will

depend on the type of data being evaluated. Some general

guidelines for the selection of visual displays follows:

1. Use the simplest display concept that will most rapidly
provide the user with the information needed to properly
interpret the data of interest. The more sophisticated
and complicated the display the longer it will take the
user to digest and the more likely the user will be to
misinterpret the data being displayed.

2. Use the least precise format needed to covey the desired
information. Overemphasizing the accuracy of readout
required can result in increasing the users response
time, add to users fatigue or mental stress, and can
ultimately cause unnecessary mistakes.

3. Use a display that is natural to the user. The picture

the user sees should convey the expected interpretation
that is associated with the data being displayed.

4. Use the most practical display technique for the expected
viewing environment and operating viewing conditions.
[Ref. 3).

Consider the case where the data of interest is a "n by n"

matrix of considerable size and the user is interested in

3



locating the maximum value in that matrix while also

recognizing any consistencies between the maximum values in

each row. In addition, suppose that the exact numerical value

of those maximum numbers are less important than their

locations in their respective rows. It would be useful if the

maximum value of the matrix could be assigned a visual

parameter and all the other numerical values could be assigned

a visual parameter that could be scaled relatively to that

maximum. This visual coding takes up significantly less space

than would be required when displaying the numerical value of

each piece of data and would allow one look at the entire

matrix at once. Consider a coding system in which the visual

scale uses grey tones over the range of white to black. The

largest value in the data set is coded to represent the

darkest shade and the smallest value is assigned the absence

of color (i.e. white). All values in between will be assigned

grey-tones relative to their numerical standing in

relationship to the maximum and minimum values. This is the

basic idea behind the grey-tone (LOFAR) display utilized in

this research.

B. RESEARCH OVERVIEW

The estimate of the spectral content of a segment of a

process is most commonly accomplished by the use of a

periodogram. The performance of the periodogram has

significant shortcomings when dealing with the detection of

4



signals in noise. One of these shortcomings is the window

function sidelobe effects that result from processing data

sets of finit, length. By using tapered window functions,

such as the Hamming, the von Hann, or the Bartlett window, one

can improve the performance of the periodogram by minimizing

the effects caused by the discontinuities of the data at the

boundaries [Ref. 4]. The periodogram also has a large

variance (independent of data length used). Typically, the

mean equals the standard deviation in the noise-only case. An

other method of improving the performance of the periodogram

is by averaging over a succession of sequential periodograms.

The smoothing of the spectral estimate is due to the reduction

of the variance of the estimate. Loss of resolution and

broadening of the main spectral peaks almost always results

from the use of either of these techniques. In the first

case, the broadening is caused by the convolution of the

window Fourier transform with the Fourier transform of the

data, while in the second case the broadening potentially

comes from having to shorten transform lengths. William Go

[Ref. 5] performed research that examined the

application of a Kalman filter to a rectangular windowed data

set. In his work he was able to demonstrate that the Kalman

filter could filter (i.e. smooth) the noise portions of the

spectral estimate while leaving the main spectral peaks

essentially unaltered. The results realized were preservation

of the original periodograms resolution while accentuating the

5



dominant spectral peaks as they rise out of the noise floor.

Go used single and multiple sinusoids in Gaussian white noise

to evaluate the Kalman filter's performance in signal

detection and resolution at different input signal-to-noise

ratios (SNR) for multiple noise realizations. He also

examined the effects of altering the filter's detection

parameter (called beta, f) and the data/transform lengths. It

was demonstrated by Go that the Kalman filter did appear to

out perform the Hamming window in signal detectability as well

as to provide better preservation of the spectral peaks. It

is our purpose to take a more in depth look at the Kalman

filter used in Reference 4.

1. Filter Parameter (f)

The filter parameter is currently chosen by the user

in an experimental fashion. The larger the # the less

sensitive the filter is to the dynamics of the spectrum and

the smaller the f the more sensitive the filter will behave.

There are some obvious trade-offs here. In [Ref. 5], a

0=300000 appeared to be the most effective for detecting the

spectral peak of signals with FFT output SNR's of 9 dB or

greater. The purpose here is to attempt to refine the choose

of 0 for signal detection of signals with FFT output SNR's

less than 9 dB.

6



a. Dynamic Beta

An area of interest is the study of the effects of

altering 0 during the filtering process. If the algorithm is

altered so that once a detection occurs the value of 3 is

reduced to make the filter very sensitive (thus preserving the

original shape of the periodograms) during the down transition

of the spectral peak, then it may be possible to retain the

resolvability of two closely spaced spectral components.

Similarly, once past a given spectral component, 0 is reset to

its original value and the filtering continues.

b. Modified Kalman Filter

Since we know that spectral components will appear

as positive peaks, and usually are of relatively short

duration, the Kalman filter algorithm was modified to replace

the filter estimate with the original periodogram data while

the filter is detecting up transitions in the data.

2. Output Presentation

For very large signal lengths it is cumbersome to look

at the periodograms line by line (i.e. transform by

transform). It would be useful to somehow stack the

periodograms and look at the final outcome of all the

transforms in their entirety such as in a 3-Dimensional plot

or intensity plot (LOFAR). An additional objective of this

research is the development of a display of these stacks of

periodograms in a grey-tone image on the Sun workstations.

7



The graphics package used in this resear-h is NCAR graphics.

The LOFAR outputs are created using the subroutine HALFTON

which draws a halftone picture from data stored in a

rectangular array. These arrays are read in row by row. The

subroutine assigns to the largest value in the data the

darkest grey-tone (i.e. highest intensity), and conversely

assigns the lightest grey-tone to the lowest value in the

data. Sixteen intensity levels for the mapping of data can be

used in a halftone image. To each intensity corresponds an

equal range in the data (i.e. linear mapping). Appendix D is

a step-by-step users guide that provides the necessary

guidance to produce LOFAR output on a NPS Sun work station.

The NPS Sun stations use the UNIX operating system via an

Internet Networking System.
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II. SPECTRAL ESTIMATION

A. BACKGROUND

Fourier analysis has been an analytical tool for use with

analog signal processing for continuous-time signals. Due to

the vast improvements made in the computational Lower of the

digital computers, the old school approach is no longer the

only method of choice. There are many applications today in

analog signal processing where it is preferred to sample the

original signal, process it on a digital computer utilizing a

discrete-time system, then converc it back to an analog signal

if desired. One technique to accomplish this is the discrete

Fourier analysis, which is the discrete version of continuous-

time Fourier analysis. Fourier-based estimation, also called

classical spectral estimation, includes two main nonparametric

methods. The first is the periodogram method, which has

limited resolution and a variance of the spectral estimate

that remains constant independent of increases in data length.

Windowing techniques may be used to improve the variance.

These techniques are extremely efficient and produce adequate

results for many dissimilar types of signals. The second

Fourier-based method is the Blackman-Tukey method which

utilizes the Fourier transform of an estimate of the

autocorrelation function. A problem of the Fourier-based

9



methods is caused by the windowing of the data during

processing. Although windowing minimizes the effects caused

by discontinuities of data at the boundaries, a drawback with

the use of windows is that leakage in the spectral domain

nearly always results. This is where energy in the main lobe

of the spectral response leaks into the nearby sidelobes,

which can obscure and misrepresent other spectral frequency

components that may be present. Using a non-tapered window

(i.e., rectangular window) provides the best resolution of any

window currently in use although the spectral leakage

resulting from using a rectangular window is worse than

realized with any other window. [Ref. 6].

B. PERIODOGRAM

There are many procedures used to estimate the spectral

content of a sample of a process. The popular choice remains

the periodogram primarily due to its ability to economically

and effectively be implemented in real time. The periodograr

is simply the square of the magnitude of the Fast Fourier

Transform (FFT) of a finite duration sequence x(n).

1. Discrete Fourier Transform

Let x(n) be a discrete periodic signal of period N,

then the definition for the discrete Fourier series pair is

10



N-1

x[n] = akeik (2x/n (1)
k-O

a I x[n] e -j k(2l/N)n (2)
N n=O

It can be clearly seen in equation (1) that the discrete

Fourier series is a finite length of N terms, compared to the

infinite number of terms found in the continuous Fourier

series. In addition, the largest number of a, terms present is

N, hence {ak} will be a periodic sequence with period N.

There i no discrete Fov~j~r representation for

nonperiodic discrete sig.as. Nonperiodic signals will

normally be of infinite ler-7th and are represented by the

following discrete-time Fourier transform pairs;

Qo+2W

x[n] 1 4 X() ejondja (3)

X(Q) = x[n] e -J "  (4)

where flo is any real number. The discrete-time Fourier

transform of x[n] is X(n) which is a continuous function

having a period of 27r.

Since x[n] is normally infinite in length and X(n) is

continuous, it is not practical to implement the discrete-time

11



Fourier transform on the computer. One approach to solving

this problem is to make x[n] nonzero only for 05n5N-I. This

appruach lead to the development of a new transform called the

discrete Fourier transform (DFT) given by

xNn = oX[k] eJk(;i/Nn, 0 n N-I (5)

N-I

X[k] = x[n]e -k(2"/2n, o g k N-i , (6)
n-O

where X[k] is the DFT of x[n]. [Ref. 6:p.79].

2. Fast Fourier Transform

There are a total of N terms involved in the summation

of equation (6) and its computation requires (N-1) complex

additions. in addition, each computation in the summation

requires one complex multiplication. To compute a N-point DFT

of a N-point sequence in a straight forward fashion, N(N-1)

complex additions and N2 multiplications are required. This

is a significant computational strain for a computer and much

effort was expended to develop ways of making the computation

of the DFT faster. The early to mid 1960's saw great progress

in this area. The Cooley-Tukey algorithm, the Good-Thomas

algorithm, Rader algorithm and chirp z algorithm (all which

came to be known as Fast Fourier Transforms), just to name a

few, resulted in increased computational speed over the DFT.

For a more complete listing of FFT algorithms as well as their

12



developments see [Ref. 6:pp. 90-115]. All of these algorithms

offer features that are particularly useful and efficient when

implemented on certain classes of computers.

Regardless of how X(k) is computed, once it is

obtained, the periodogram spectral estimate is computed via

SN(k) = Ix(k) 12 = X'(k)X(k), k = 0,1, .N-l, (7)

where X'(k) is the complex conjugate of X(k).

C. BLACKMAN-TUKEY SPECTRAL ESTIMATION

The Blackman-Tukey spectral estimator was named after R.

Blackman and J. Tukey who published their work in 1958. The

procedure estimates the autocorrelation function (ACF) as

[ N-I -k
| : x* [n] x [n~k] k=-0,i, . . .N-I

f[k] n 1-0(8

[f,, [ -k] k -( -), N 2 . .-

which is Fourier transformed to obtain the PSD estimate. The

periodogram is given by

X-i

PPER (f) = E Exxe (iJ 2 xk)
k--(N-1)

The inferior performance of the ACF estimator is the cause for

inferior performance of the Blackman-Tukey estimator. The ACF

13



estimator is biased regardless of sample size and has an

expected value of

E[?c[k]] - N-kjr[k] IkliN-1 (10)
N

Examination of equation (10) demonstrates that the mean value

of the ACF estimator is equal to the true ACF weighted by a

Bartlett (triangular) window. An unbiased ACF could be used

by replacing the 1/N factor in equation (8) with i/(N-IkI).

This could result in a negative spectral estimate since a

positive semidefinite sequence can not be guaranteed when

using an unbiased ACF estimator. This estimation approach was

most popular until the development and implementation of the

FFT algorithm. [Ref. 7].

D. WINDOWING EFFECTS

Windowing (often referred to as weighting or shading) is

an important topic that is integral to all classical

estimation methods. We use windows to control the effects of

sidelobes associated with these classical spectral estimators.

"Tapering functions" is another name often given to data

windows. The fundamental purpose of a data window is to

lessen the bias in periodogram estimates. [Ref. 4:pp. 136-

146].

Processing of finite duration data sets presents unique

problems in analyzing the harmonic characteristics of .hat

14



data. It is important to pay particular attention to

detecting spectral components in the close proximity of

stronger spectral components as well as to resolvability of

those components. The FFT assumes sequences to be periodic.

That is the sampled data being analyzed is one complete period

of an infinitely long periodic sequence. Of all possible

frequencies in the data set only those that are located at an

FFT bin center will be projected as a unique value in the

frequency domain. All other frequencies will have non-zero

projections over the entire frequency domain. This is termed

spectral leakage and is a consequence of data records of

finite duration [Refs. 4 and 5].

In nearly all cases of interest, the spectral components

present in observed data will be at frequencies other than

those located at FFT bin centers. Frequency components not

located at a bin center will be non periodic in the

observation window. This results in discontinuities at the

observation boundaries, which in turn results in leakage over

the entire range of the FFT.

Consider a finite data record that is a portion of an

infinite sequence that has been multiplied by some window.

Consider an observed data sequence x0(n] of N points that is

the product of a rectangular window, rec(n), of unit amplitude

and an infinite-duration sequence, x(n), where

15



JI n=0,1,2, ... , (N-i)

rec(n) h (11)
10 o th erwi se

and the observed data sequence is

x0 [ n] = xn] rec[n] (12)

The assumption made here is that all unobserved samples are

essentially zero. Therefore, data that is processed "as is"

is data that has been rectangularly windowed. Window

functions other than the rectangular window function are

called weighting functions that reduce the effects of boundary

discontinuities. This smoothing of the observed data at the

boundaries is one goal of windowing.

Multiplication of the time series in equation (12) results

in the convolution of the transforms of x(n) and rec(n) in the

frequency domain. This results in a broadening or smearing of

the power of the spectral components into adjacent frequency

bins, provided the spectral component is not located at a bin

center. If non-rectangular windows are used smearing will

occur regardless of spectral component location. The

narrowest spectral response of a windowed sequence can be no

less than that determined by the mainlobe of the transform of

the window, independent of the data [Ref. 4:p.137]. These

mainlobe widths are different for each window function. For

example, the main lobe width (half-power bandwidth, which is

3 dB down from the peak response) for a rectangular window is

16



about the reciprocal of the observation interval (NT, where T

is the tiie interval between samples). The leakage mentioned

earlier results in sidelobes of the main spectral components.

These sidelobes may bias the amplitudes of adjacent frequency

responses and may completely mask the presence of weaker

signals, thus preventing their detection.

Another goal of tapered windows is to achieve better

sidelobe levels than those of the rectangular window. By

decreasing the sidelobe levels the bias can be reduced. The

drawback here is that sidelobe depression can only be

accomplished by broadening the windows mainlobe frequency

response. This in turn reduces the spectral resolution.

Table I presents performance characteristics of different

window functions. The trade-off between sidelobe depression

and mainlobe resolution must be considered when determining

the optimum window of choice.

Table I. Window Performance Characteristics
[Ref. 4: p. 143).

WINDOW HIGHEST 1/2-POWER
NAMES SIDELOBE BW

LEVEL (DFT BINS)

Rectangle -13.3 dB 0.89
Triangle -26.5 dB 1.28
Hann -31.5 dB 1.44
Hamming -43.0 dB 1.30
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E. ZERO PADDING

There are two primary purposes for zero padding a data

set. First, to allow for transform value interpolation

between the original N transform values. To illustrate, let

us consider a data set x(n) of a finite length N. Next, zero

pad that data set with N zeroes such that

x(n) n=0,1,2. ...., (N-l)
y(n) =10 n=N, (N+I) ..... , (2N-1) .

From equation (6) the DFT of the 2N point data sequence y(n)

is

2N-1

Y[k] = F y[n] e -jk(/21J)n
n-0

N-1

= x[n] e - jk( 2 /2 Mn, k=0,i,2,...,(2N-I). (14)
n-0

Comparing the results of equations (6) and (14) note that

X[k/2] k=0,2,4,..,(2N-2)
Y [k] N- -jc-s/2YF x[n] e -k( 2 /2 l k=l,3,5,.., (2N-I) (15)

n-0

and that the 2N-point DFT of y(n) is identical to the N-point

DFT of x(n) at even index values and therefore the odd values

of k represents the interpolated DFT values between the

original N-point DFT [Ref 4:pp. 43-44]. The second purpose of

18



zero padding is to augment a data set to ensure it is of a

length that is a power of two to allow the use of an FFT.

To demonstrate the effects of zero padding consider a 16-

point rectangular window. The DFT of a rectangular window

will result in a digital sinc function of the form

Dn(f) =Te(-2xft[N-1) s i n (7 rf TN] (16)sin(7cfT) (6

The digital sinc function (DN) possesses sidelobes.

Nevertheless, when we calculate and plot the transform we

notice only a central spike at the origin with no sidelobes

evident (Figure 1). The reason that no sidelobes are visible

is because the FFT of the non-zero-padded rectangular window

series examines DN at its zero crossings and therefore, the

structure of the sidelobes remains hidden. The zero crossings

of DN occur at FFT bin centers and by zero padding one can

calculate interpolated values between bin centers which allows

the presentation of the sidelobe structure. Figure 2

represents the magnitude of the FFT of a 16-point rectangular

window zero-padded to 32-points. It is important to

understand that zero-padding a data sequence prior to the DFT

will not improve the resolution of the periodogram. This is

the same principle that applies to more typical spectral

estimation problems.
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To better illustrate the effects of zero-padding

consider a sinusoid of unit amplitude intermixed in Gaussian

white noise. The noise has a variance of 0.0005 which

corresponds to SNR of 30 dB defined by

SNR = 10"log[ 2(17)

where A = sinusoidal amplitude and a2 is the variance of the

Gaussian noise. In this illustration the data record length

(N) is 32 and sampling frequency (f,) is 32 Hz. The

sinusoidal frequency used is 10 Hz. The bin centers of the

FFT will fall at integer multiples of f,/N. In this example,

f,/N = 32/32 = 1 Hz per bin. The sinusoidal frequency of 10

Hz is located exactly at a FFT bin center. The spectral peak

is clearly displayed (Figure 3) since the frequency is at bin

center. Also note virtually no evidence of the presence of

sidelobes since the digital sinc function was interrogated at

the zero crossings. Figure 4 is the results of the same

signz - described above with the exception of being zero padded

to 64-points. Note that the sidelobes of D. are now visible

because of the zero-padding.

Now let us examine the effect of a sinusoidal frequency

not located at bin center. Let the sinusoidal frequency be

10.7 Hz. Figure 5 is the result of a non-zero-padded 32-point

sequence. The sidelobes are present even though the sequence
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was not zero-padded. This is because the sidelobes of DN are

now visible since the FFT is interrogating D. at locations

other than its zero crossings. Spectral leakage is also

evident, which has smeared signal energy into nearby frequency

bins. Notice a broader, less-pronounced mainlobe results.

F. STATISTICAL PROPERTIES OF THE PERIODOGRAM

The distribution of a white Gaussian noise data set x(n)

is given by:

x(n) - N(V,02) . (18)

Consider the case where the mean of x(n) is zero (i.e. g=o)

and the sample is of size N. The DFT of x(n), defined as

X(k), will be comprised of real and imaginary parts, labeled

A(k) and B(k) respectively, that are orthogonal linear

combinations of x(n). For simplicity let X(k) be normalized

by I/SQRT(N). Therefore, both A(k) and B(k) are Gaussian

random variables with the distribution N(O,Y,2) and are

mutually uncorrelated. The sum of the squares of the real and

imaginary parts of X(k) is the periodogram (Per) of x(n) and

is given by

Per,(k) = A 2 (k) + B 2 (k) . (19)
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The probability density function of Per(k) is chi-

squared with 2 degrees of freedom. The mean and variance of

Per, (k) are

E[Per,(k)1 = 2o2 for all k (20)

4a'; k*,
2 N2

Var [Per (k)] = 
(21)

I 2

For a derivation of equations (20) and (21) see

[Ref. 8].

27



III. SPECTRAL ESTIMATION USING THE KALMAN FILTER

A. BACKGROUND

As described in Chapter II the problem with the use of

FFT-based spectral estimation is the trade-offs associated

with sidelobe suppression versus spectral resolution. The

application of tapered windows to a time series data set for

the purpose of suppressing the sidelobes results in the

broadening of the spectral mainlobe. Each tapered window

possesses different performance characteristics as presented

in Table I. It was demonstrated by Go [Ref. 5] that the

application of the Kalman filter to the periodogram of an

unwindowed spectral record for minimizing the variance with

minimal degradation of the spectral resolution showed promise.

Figure 6 allows the comparison of the resolution maintained by

the Kalman filter relative to the mainlobe broadening seen in

the Hamming window. The conclusions reached by Go were:

1. The Kalman filter can enhance the spectral peaks of the
periodogram of an unwindowed time series.

2. The resolution for the multi-spectral peaks of the
periodogram is largely preserved by the Kalman filter.

3. Reliable signal detection was achieved for signals with
SNR's (after processing) of 12 dB for fi in the range
between 100,000 and 700,000.

4. Signal detection was possible for SNR's (after
processing) down to 6 dB in a small percentage of noise
realizations.
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Kalman filtering is an estimation or prediction procedure

which was introduced by R.E. Kalman and R.S. Bucy in the early

1960's. The basic idea of a Kalman filter is to recursively

update the estimate of the state of a system by comparing

these estimates to the system measurements. A naw estimate

follows each measurement. The basic ingredients of the Kalman

filter are a stochastic differential system (called the system

model) and a set of observations (called the measurement

model) which allow for the computation of the state vector

estimates. The measurement and the state estimate need not be

of the same dimensionality. [Ref. 9].

The Kalman filter algorithm demonstrated by Go was written

by Dr. Roberto Cristi at the Naval Postgraduate School,

Monterey California in 1988. The algorithm was developed to

detect piecewise constant segments of time series data

corrupted by noise. If data under examination consists of

piecewise constant segments, then there are two possibilities

at each new observation. They are;

1. the current observation is a continuation of the previous
piecewise constant segment of data or

2. the current observation is the first element of a new
segment of data.

The algorithm uses a filter parameter 0 to quantify the

likelihood of a transition from one piecewise constant segment

to another. If no transition is detected then the current

observation is filtered using a Kalman filter updated with the

current Kalman gain. If a transition is detected then the
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current observation is filtered using a reinitialized Kalman

filter. The sensitivity of the filter to detect transitions

between piecewise constant segments is a function of the

parameter 0. If the value of fl is "too small", then the

filter will reinitialize too often resulting in less smoothing

of the data. If the value of 1 is "too large", then over-

smoothing will occur and transition points will not be

detected. For a detailed description of the development of

this algorithm see [Ref. 5: ch. 3]. To demonstrate the

effects of different values of 1 consider a sinusoid corrupted

by Gaussian noise. Figure 7 shows the result of filtering a

periodogram of an unwindowed sinusoid (freq=10.7 Hz) time

series with a sample size of 128-pts zero padded to 256-pts

sampled with f, (sampling frequency)=64 Hz and an input SNR=-9

dB. Values for fl of 8k, 80k and 800k (where k=103) where used

to filter this data. Note the added detail in the plot of the

filter output for 0=8k versus the over smoothing where fl=800k.

B. EXPERIMENTAL DATA

The data used in this research was computer generated.

It is sinusoidal data in additive Gaussian white noise of

different variances. Every data set had at least one sinusoid

of unit amplitude with a preselected SNR. The noise variance

(02) for that data set was calculated using equation (17).

For data sets with more than one frequency component, the
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amplitude of each component was the determining factor in

achieving that component's desired SNR.

Transform lengths of 128-pts zero-padded to 256-pts were

used exclusively in this research. Zero-padding does not

improve FFT processing gain, which for best case can be

approximated by

[log 2 (data record length) - 1] x 3 dB (22)

provided the data is stationary over the data length. The

processing gain for an 128-pt FFT is about 18 dB, therefore

the realized SNR on the output side of the FFT is

SNRou= SNRin + PG
(23)

SNRin + 18

where SNR, is the SNR on the output side of the FFT and SNR,

is the SNR of the input signal. Data used in this study will

be of this form unless otherwise specified.

C. KALMAN FILTER MODIFICATIONS

1. Dynamic Beta

It was shown [Ref. 5] that the Kalman filter algorithm

can be successfully adapted for smoothing spectral data. The

filter parameter 0 is the controlling factor that determines

how much the noise portions of the periodogram are smoothed

and how well the transition points are detected. The result
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for an appropriately chosen 0 will be a smoothed periodogram

with narrow mainlobes that are essentially unaltered from the

original periodogram. A common trait of the original Kalman

filter is a tapering (i.e., roll-off) effect on the higher

frequency side of the mainlobe. This is a result of the

Kalman filter failing to reinitialize after the peak and on

the down-transition of the periodogram. A smaller valued 0

would be more sensitive and would more closely follow the

down-transition of the original periodogram. Unfortunately,

as shown in Figure 7, small values of 3 provide less smoothing

and little improvement over the original periodogram.

This is the motivation for allowing f to be dynamic

during the filtering process. An optimum value of 0 is used

during the initial filtering process until a transition is

detected. Once a transition is detected the value of P is

decreased to insure maximum sensitivity (0=1 is used in this

study), which minimizes the tapering effect on the down-

transition side of the spectral component.

Consider a sinusoid where f=10.7 Hz and SNR ,=-9 dB.

The periodogram of the unwindowed data record is filtered

using the original Kalman filter algorithm with 0=80k. The

same periodogram is again filtered using the Kalman filter

with the dynamic 0 (i.e., 0=80k or 1). Figure 8 shows the

result of that type of processing. Notice the tapered

response on the higher frequency side of the spectral peak in
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the case for constant 0 filtering. The shape of the

unwindowed periodogram on the high frequency side of the

mainlobe is clearly more preserved in the dynamic 0 case.

Another important observation is that there is no change in

the dB level of the noise floor for either filter output.

It is not uncommon for the dynamic 0 filter to provide

similar results as when using the constant 0 filter for some

ro r~'alizations. While 0 is at the "very" sensitive

setting and the data does not exceed a given transition

threshold then the algorithm will redefine 0 to the original

filtering value. This redefining of 0 may occur in the

vicinity of the spectral peak. This can result in filtering

of the down side of a spectral peak with the same value of

used in the constant 0 filter.

Although there are instances when the dynamic f will

not improve filter performance, it was exceedingly rare (less

than 10 out of 256 trials) for the dynamic filter to provide

less satisfactory results than the constant 0 filter. The

LOFAR output is the presentation of 128 single step traces.

Even if only a few of the 128 traces are improved by the

dynamic filter process, then those improvements could lead to

enhancement of signal detectability and resolution.

2. Data Substitution

The second modification made to the Kalman filter

algorithm was driven by similar motivation as for the dynamic
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fl filter discussed earlier. It is clear that the Kalman

filter can smooth spectral data while leaving the mainlobe of

the periodogram virtually unaltered for appropriately chosen

and SNR, of 9 dB and larger. The second modification was

made in the attempt to improve upon the filters ability to

preserve resolution of the original spectral data. In the

frequency domain the spectral component of a sinusoid will

span only a small number of FFT bins as compared to the total

number of bins/frequencies represented in the FFT output. For

an appropriately chosen 0 the total number of times the Kalman

filter detects transitions from one piecewise smooth segment

to another is few compared to the number of times the filter

detects no transitions.

Let Y(k) be the periodogram of an unwindowed time

series and let X(k) be the output of the Kalman filter (for

either the constant fl or dynamic 0 algorithm) computed from

the filtering of Y(k). The Kalman filter was modified to

produce a new output (XM(k))

{ X(k) no transition detected
X (k) = Y(k) up-transition detected (24)

This modification can be implemented in conjunction with

either the dynamic or constant # filters. The notation

"modified" Kalman will be used to describe this modification

throughout this study.
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Figure 9 shows the Kalman output of a dynamic 0

process versus the output from the dynamic 0 a&gorithm

modified as described above in equation (24). Notice there is

not an obvious improvement in resolution of the spectral peak

over the dynamic 0 only case (upper right Figur- 9), but there

is a measurable lowering of the noise floor realized for the

dynamic ( filter modified to substitute raw data in for the

estimate during detected transitions. The noise realization

filtered in Figure 9 displays about a 1.5 dB improvement in

raising the spectral peak height above the noise floor. This

is a consistent result observed throughout this study.

D. KALMAN VERSUS HAMMING

Results presented by Go [Ref. 4] indicated that the Kalman

filter appeared to outperform the Hamming window in signal

detection at SNR of 9 dB and below for 0=300k. The

relatively small number of noise realizations looked at in

reference 4 were insufficient to estimate just how much better

Kalman was over the Hamming window in signal detection. Here

the outputs of the Hamming window and Kalman filters (for

0=80k,135k and 300k) of both the dynamic ( and the "modified"

Kalman filter using dynamic ( were examined for 128 noise

realizations. This was done twice. Once for SNR,=-9 dB and

once for SNR,=-12 dB. For both cases the sinusoidal frequency

was f=20.0625 Hz. The output for each noise realization was

examined to determine a hit or miss for signal detection for
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each filter process. An example of one noise realization for

SNRm=-9 dB for the Hamming window (upper right), Kalman with

dynamic 0=80k (lower left), and Kalman "modified" filter with

dynamic 0=80k (lower right) is provide with Figure 10. If the

output displayed a peak at the true spectral location then a

detection was recorded for that filter process and that noise

realization. The totals were tabulated and are presented in

Table II.

Table II. Detection comparisons for Kalman vs Hamming for
128 noise realizations at SNRm=-9 dB and for 128 noise
realiza-tions at SNRm=-I2 dB. The number of misses are
provided.

Filter Process SNR,=-9 dB SNR4=-12 dB

Hamming Window 31 59

Dyn /=80k 19 52

Mod Kal, Dyn 0=80k 19 49

Dyn / = 135k 24 55

Mod Kal, Dyn 0=135k 23 52

Dyn / = 300k 36 70

Mod Kal, Dyn 0=300k 36 67

A statistic that was not collected was the number of false

detection (i.e., false alarms) made by each different

filtering prccess. Since the spectral location of the false

alarms are random and independent of the noise realization,

and each trace is one of 128 that will be displayed in a LOFAR

output, the false detections should have negligible impact.

40



to

!1 o

C)m C3 1

6 C

I

CA 0 0

I ID

o
o 0 0

Figur r0 erooga (f2.62 z N =9d) flee

m 0)C) 0 C
0 OC4

InC

Kam n FilerDy I80

00Oamn ir DV 3=

X4



E. LOFAR OUTPUT

As mentioned earlier, for very long signal segments it can

be cumbersome and time consuming to look at the periodograms

or filtered periodograms trace by trace. Also at SNRJJ of 6

dB or less it is sometimes difficult to distinguish signal

from noise for many of the individual traces. Another problem

of examining spectral data trace by trace is the difficulty of

detecting the dynamics that may be present in some signals.

A solution to these problems is to display all (or at

least a substantial number) of the periodograms simul-

taneously. This display needs to be relatively fast and

compatible with the SUN workstations. The procedure used is

to stack the periodograms into a matrix that is 128 by 128 in

size. The largest numerical value in the matrix is assigned

the darkest grey-tone and conversely, the lightest grey-tone

is assigned to the lowest value. Sixteen intensity levels are

used for the mapping of the remaining data. To each intensity

level is a corresponding equal range in the spectral density.

The graphics package used to create this image is NCAR.

NCAR Graphics is a collection of FORTRAN 77 programs and

subroutines that can be used to generate and plot computer

graphics suitable for the display of scientific data. NCAR

Graphics conforms to the Graphical Kernel System (GKS)

standard, Level OA (zero A).
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The LOFAR outputs used in this study are created using the

subroutine HALFTON which draws a halftone picture from data

stored in square or rectangular arrays. A time domain

(sinusoidal) signal corrupted by additive Gaussian white noise

is generated. The signal length is 16384 points. The signal

is processed in segments using 128 non-overlapping contiguous

samples, zero-padding to 256 points. Each segment provides

one periodogram which is stacked in array form. The resulting

array is a square matrix 128 by 128, where the rows are the

periodograms of the individual segments and the columns

represent frequency. The matrix is read into HALFTON and is

displayed as a LOFAR output. Figure 11 is an example of a

LOFAR output of rectangular windowed data with f=10.7 Hz,

SNRm=-12 dB and ,=64 Hz. The horizontal axis is the frequency

axis which goes from 0 to 32 (f,/2) Hz while the vertical axis

represents time running from the bottom to the top. The 10.7

Hz line is quite obvious even though the SNRO is only 6 dB.

This dramatic increase in detectability over the individual

periodograms is due to the additional processing gain obtained

by the visual display.
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Figure 11. LOFAR output of rectangular windowed signal;
f=10.7 Hz, SNR, =12 dB and f,=64 Hz
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IV. EXPERIMENTAL RESULTS

A. EFFECTS OF FILTER MODIFICATIONS

1. Dynamic versus Constant f

Allowing 0 to be dynamic during the filtering process

often results in a more accurate representation of the

spectral shape on the higher frequency side of the mainlobe

than achieved by the constant 0 filter. Figure 12 thru

Figure 21 are 10 different noise realizations which compare

the performance of a constant 0 filter with a dynamic 0

filter. The spectral data has two frequency components. One

is fl at 10.7 Hz at an SNR, of -9 dB and the other one is f2

equal to 11.7 Hz at an SNR, of -12 dB. A 1 Hz separation is

equivalent to 4 bin separation for a sample size of N=128 at

a sampling frequency of 64 Hz. The dynamic # filter provided

more accurate representation of the original periodogram in 4

of the 10 noise realizations without a single case of inferior

performance.

Figure 22 shows two LOFAR outputs allowing the

comparison of the outputs for constant and dynamic 0. In this

representation it is not clear that there is any

distinguishable difference between the two filtering outputs.
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2. Kalman versus "Modified" Kalman

Modifying the Kalman filter to substitute raw spectral

data in place of filter estimates after up transitions are

detected provides two important benefits. First, in single

trace outputs more detail in the vicinity of the spectral

mainlobe is preserved in a large number of the noise

realizations. Second, the noise floor is consistently lowered

anywhere from 1 to 3 dB, with 1.5 dB appearing to be about the

average improvement. This result can have a dramatic effect

on the quality of the LOFAR image output. Figure 23 thru

Figure 32 are 10 different noise realizations of periodograms

filtered using the dynamic 0 and the "modified" dynamic 0

algorithms. The input time series contains a sinusoid at a

frequency f at 10.7 Hz with a SNR, of -9 dB. In 6 of the 10

noise realizations is a measurable improvement when using the

"modified" dynamic # filter in that the distance of the

spectral peak separation from the noise floor increases. In

addition there are 3 noise realizations where the spectral

resolution is better preserved by the "modified" dynamic

algorithm than by non-modified dynamic 0 filter algorithm.

Figure 33 shows the LOFAR output for the "modified"

filter and the non-modified filter. Both filters used a

dynamic f of 135000. The reduction of the noise background is

obvious. The "modified" dynamic filtering scheme shows
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promise to improve signal detectability as well as the

frequency resolution.
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B. "MODIFIED" KALMAN FILTERING VERSUS HAMMING WINDOWING

It has been demonstrated that the Kalman filter more

accurately preserves the spectral resolution of the original

periodogram whereas the Hamming window will broaden the

mainlobe (see Figure 6). The statistics tabulated in Table II

(p. 40) clearly show that the Kalman filter (0=80k and 135k

for both the "modified" dynamic fl and the dynamic 0) is more

successful at signal detection at an SNR1 of -9 and of -12 dB

than the Hamming window.

Figure 34 displays the LOFAR output of a 3 component

sinusoidal signal (f1=10.7 Hz at SNR,,=-9 dB, f2=14.45 Hz at

SNRm=-15 dB and f3=20.25 Hz at SNR,,=-9 dB) of rectangularly

windowed segments. Figure 35 permits the comparison of using

the Hamming window and the "modified" Kalman filter with a

dynamic # of 135k on the same data.

The "modified" Kalman filter preserved the spectral

resolution of the original unwindowed spectra where as the

mainlobe broadening is evident when applying the Hamming

window. This broadening can have a major impact in detecting

nearby spectral components. See Appendix B for a closer look

at resolution comparisons between Hamming window and the

"modified" Kalman filter. Also note the reduction in the

noise background of the Kalman LOFAR output which enhances the

-15 dB component more clearly than the Hamming window.
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C. EFFECTS OF SNR,

Kalman filtering consistently permits detection of signals

corrupted by additive Gausian white noise at a SNRJ of 6 dB

or greater. Consider the two extreme cases of signal only and

noise only. A signal at SNRm=30 dB (signal only case)

filtered using the "modified" Kalman filter (using a dynamic

0=8k, 80k and 800k) produces excellent results as shown in

Figure 36 where the "modified" Kalman filter detects the

frequency component and preserves the resolution regardless of

the 0 used. In the case of noise only (SNRm=-60 dB) the

"modified" Kalman filter output provided in Figure 37 is

identical for all three f's used in processing the original

periodograms.

To take a closer look at the "modified" Kalman filter

performance with SNR , of less than 9 dB, we consider a signal

of 6 non-equally spaced frequency components at f1=3.3 Hz with

SNR 1=-9 dB, f2=8.7 Hz with SNR,=-12 dB, f3=14.4 Hz with SNR =-

13 dB, f4=19.3 Hz with SNRm=-l4 dB, f5=23.7 Hz with SNR =-l5

dB and f6=28.3 Hz with SNR=-16 dB. We filter this signal

with a Hamming window and a "modified" Kalman filter using a

dynamic fl=80k. Figure 38 displays the LOFAR outputs of these

filters. In both LOFAR outputs fl, f2 and f3 are detectable.

However, note the reduced noise background in the "modified"

Kalman filter and the superior resolution of the "modified"

Kalman filter (most obvious for fl). The tonal line of f4
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(SNR1=-14 dB) is also present in both but is not nearly as

distinct. It is much more difficult to observe f5 or f6 using

either filtering process.

Further processing gain (for stationary frequency

components) can be realized by averaging the columns of the

periodogram arrays. The procedure used in this study is to

sum the columns and divide the sum by the number of rows (128

in our case). Let Y(j,k) be an input array of size J by N

then X(k) is calculated as follows;

SumYk) = Y(j, k)J

SumYnorm(k) = SumY(k)
max(SumY(k))

X(k) = lOloglo(SumYnorm(k)) k=1,2. .... ,N. (25)

Figure 39 is the output of this process for the rectangular

window, Hamming window, Kalman ("modified" dynamic #=80k) and

Kalman ("modified" dynamic f=135k). All six frequency

components are clearly present in all the displays. It

appears however that Kalman is superior in smoothing the noise

variance between components.

To take this experiment one step further a new signal was

generated using the same frequencies as before but at lower

SNR's (f 1 at SNR,,=-16 dB, f2 at SNR,=-17 dB, f3 at SNR,=-18 dB,

f4 at SNR,=-19 dB, fb at SNR,=-20 dB and f6 at SNR,=-21 dB).
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For completeness Figure 40 shows the LOFAR outputs for the

Hamming window and the Kalman ("modified" dynamic 0=135k)

filters for this experiment. Neither process appears to have

much success at detecting any of the six frequency components.

Figure 41 is the output of the process defined in equation

(25). The "modified" Kalman filter is much less successful at

smoothing the noise variance between frequency components in

this SNR range. This is due to the tendency of the Kalman

filter to track the noise at small SNR's (also see Figure 37).

The tendency of the Kalman filter to track the noise at

small SNR's is a result of the statistical properties of the

FFT of additive white Gausian noise (WGN). If the noise input

(time series) is a white Gaussian sequence with zero mean and

variance a2, then the magnitude squared of Lne FFT IY(k) 12 will

have a chi-squared distribution with 2 degrees of freedom with

a variance a2y where the mean equals the standard deviation.
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V. SUMMARY

A. CONCLUSIONS

The Kalman filters examined in this study (constant 1,

dynamic 1 and "modified" filter) all demonstrated the ability

to enhance the spectral peaks of a periodogram of an

unwindowed time series. The dynamic fl and "modified" dynamic

filters provide the best resolution preservation of the

mainlobe with negligible broadening. The Kalman filter

significantly outperformed the Hamming window at SNR's of 6

and 9 dB for 0=135k and 0=80k. The false detections for these

filters cause negligible degradation to the output when

displayed as LOFAR gram.

The selection of the filter parameter 0 is dependent on

SNR . In addition, the selection of the filter parameter P

can be adjusted to maximize filter performance if prior

knowledge of the desired filter output is available. Using

the "modified" filter with 0=135k results in reliable signal

detection at SNR, of 9 dB in the periodogram with minimal

false detections. For 0=80k, reliable detections are also

made at SNRO of 9 dB but at the cost of an increase in false

detections. Prior knowledge of the composition of the

expected signal of interest will have a major impact on the

selection of 1. The larger the expected SNR , the larger
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can be to provide good smoothing with maximal signal

detectability. For SNR, of 6 dB, a P of 135k provids the best

results. For SNRO less than 6 dB, a 0 of 80k is the optimum

choice while for SNR greater than 9 dB, a 0 of 300k is

appropriate.

Viewing Kalman filter outputs on LOFAR outputs has

resulted in detection of signals with SNR , down to 3 dB. The

LOFAR output also demonstrates the capability for the Kalman

filter to process time varying spectra. See Appendix C for a

more detailed description.

The "modified" Kalman filter (for either constant or

dynamic 0) can enhance the spectral peaks of a periodogram by

consistently reducing the noise floor by 1 to 3 dB over the

non-modified filter. This reduction in noise can have a

dramatic impact when displayed as a LOFAR output.

B. FUTURE WORK

The Kalman filter is effective at preserving the spectral

resolution of the original periodogram. Modifying the filter

algorithm to substitute the original periodogram data for the

filter estimates during up transitions enhances the Kalman

filter performance in signal detection, noise reduction and

spectral preservation. With the recent interest in signals

with narrowband mainlobe structure (called "SWATH" signals),

further modifications of the Kalman algorithm for specific
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application to the processing of these "SWATH" components is

an area of future work.
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APPENDIX A. USERS GUIDE / COMPUTER CODE

A. SIMULATION USERS GUIDE

The Kalman filtering algorithms used in this study are

written in Pro-Matlab (version 3.5h). All algorithms used to

support the simulations are also written in Matlab with the

exception of the grey-tone shading program which is written in

FORTRAN 77. The simulations were run on a NPS Sun work

station. The NPS Sun stations use the UNIX operating system

via an Internet Networking System.

A complete simulation (from data generation to LOFAR

output) can be executed providing all of the following code is

copied into the directory in which Matlab is started in. This

simulation is limited to a single stationary frequency

component signal processed using the "modified" Kalman filter

with a dynamic beta. The following steps should be followed

to run this simulation:

1. Change to the directory that all applicable programs are
residing in.

2. Start matlab by typing 'matlabil'.

3. At the matlab prompt type 'kfilter'.

4. Follow the instructions on the screen.

The entire simulation will take approximately 15 minutes for

a 128 by 128 Kalman filtered array output. If a hard copy
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output is desired follow the procedures provided in Appendix

D. The program KFILTER.M can be modified to generate more

complicated data for processi'j.

B. COMPUTER CODE

All the ccputer code needed to reproduce the work in this

thesis is provided below.

1. Kalman Filter Algorithms

a. NModified Kalman with Dynamic#

% KALMOD1.M
% This program filters the array of desired periodograms
% of time series data using a "modified" kalman filter with
% a dynamic Beta. The entering arguments are;

- <file name> of PSD array
- sample size
- sigma (already calculated if data was generated
using "KFILTER.M " program).

- total number of (nem) points in the array (already
calculated if "KFILTER.M" was used).

- the kalman filter parameter "Beta"
% The subroutine outputs are;

M= periodogram of filter output in dB
C= periodogram of filter output in power

% Define the function "KALMODI"
function [M,C]=kalmodl(psdsampsize,sigma,totpts,betah)

KALMAN FILTER

x=zeros(2,sampsize);
pointer=zeros(2,sampsize);

beta=betah;
betal = 1

sv2=sigmaA2;

% create loop for the number of rows in psd
rows=totpts/sampsize;
for k=l:rows

y=psd(k,:);
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e1=0. 0;
e2=0O. 0;

d1=0.O0;
d2=0O.O;

X(1,1)=y(1);
x (2, 1)=y(1)
tau=1.O;

MAIN LOOP

for t=1: (sampsize-l);
k1:1.O/(tau+1.O);
x11=x(1,t)+kl*(y(t)-x(l,t));
dll=dl-beta;
ell=el+(1.O/(2.O*sv2))*((y(t+lh-xllV^

2 );

cll=ell+dll;

k2=1.0;
x12=x(1,t)+k2*(y(t)-x(1,t));
d12=dl+beta;
e12=el+(1.O/(2.O*sv2))*((y(t+l1hxl

2 )A2 );
c12=e12+d12;

kl=O.5;

d21=d2-beta;
e21 = e2+(1.O/(2.O*sv2))*((y(t+1h-x21V

2 );

c21=e2l+d2l;

k2=1.0;
x22=x(2,t)+k2*(y(t)-x(2,t));
d22=d2+beta;
e22=e2+(l.O/(2.O*sv2))*((y(t+l1hx

2 2 )A2 );

c22=e22+d22;

UPDATE STATES IN DYNAMIC PROGRAM.

if cll<c21
X(I,t+1)=x11;
el=ell
dl=dll
cl=el+dl;
pointer(1,t+1)1 ;
tau = tau+1;
betabetah;

else
x (1, t+1)=y (t)
el=e21;
dl=d21;
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cl=el+dl;
tau=2;
pointer (1,t+l) =2 ;
beta=betal;

end

if c22<c12

e2=e22;
d2=d22;
c2=e2+d2;
pointer(2 ,t+l) =2;
beta=betal;

else
x(2,t+l)=x12;
e2=e12;
d2=dl2;
c2=e2+d2;
pointer(2,t+l)=l;
beta=betah;

end
end

END MAIN LOOP

BACKWARDS SMOOTHING AND SUBSTITUTION

tau=1.O;

if cl<c2
out=1;

else
out=2;

end

y(sampsize)=x(out,sampsize);

for t=sampsize:-1: 2
out=pointer (out, t);
xout=x(out,t-l);

if out==2
tau=1.0;
y (t-1) =xout;

else
tau=tau+l;

y (t-1) =xout;
end

trans (I, t-l) =out;
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C(k,:)=( y(2:length(y)) y(1)];
end

end

% Normalize each row of C to 1 and
% clip the data to 10A(-6).

psnorm=normod(C,rows);
psnorm=clip(psnorm, 10^(-6));

% calculate the SPL of psnorm and store in M
M=loglO(psnorm).*10;

b. Kalman Filter using a Dynamic

% KALMOD.M
% This program filters the array of desired periodograms
% of the time series data using a kalman filter with a
% dynamic Beta. The entering arguments are;

- <file name> of PSD array
% - sample size
% - sigma (already calculated if data was generated
% using "KFILTER.M" program.
% - total number of (nem) points in the array (already
% calculated if "KFILTER.M" was used.
% - the kalman filter parameter "Beta"
% The subroutine outputs are;
% M= periodogram of filter output in dB
% C= periodogram of filter output in power

% Define the function "KALMOD"

function [M,C]=kalmod(psd,sampsize,sigma,totpts,betah)

KALMAN FILTER

x=zeros(2,sampsize);
pointer=zeros(2,sampsize);

sv2=sigmaA2;
beta=betah
betal=1

% create loop for the number of rows in psd
rows=totpts/sampsize;
for k=l:rows

y=psd(k,:);
el=0.O;
e2=0.0;
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d1=0.0; d2=0.0;

x (1, 1) =y (1) ;
X (2,1)=Y(1);

tau=1.O;

MAIN LOOP

for t=1: (sampsize-1);
kl=l.O/ (tau+1.O);
xll=x(1,t)+k1*(y(t)-x(1,t));
dll=d 1-beta;

cll=ell+dll;

k2=1. 0;
x12=x(1,t)+k2*(y(t)-x(1,t));
d12=dl+beta;

c12=e12+d12;

k1=0.5;
x21=x(2,t)+kl*(y(t)-x(2,t));
d2 1=d2 -beta;
e21 = e2+(1.O/(2.O*sv2))*((y(t+l)-x21)A2);
c21=e2l+d21;

kc2=1.0;
x22=x(2,t)+k2*(y(t)-x(2,t));
d22=d2+beta;
e22=e2+(l.O/(2.O*sv2))*((y(t+1)-x22 )A 2);
c22=e22+d22;

UPDATE STATES IN DYNAMIC PROGRAM.

if cll<c21
X(l,t+l)=xll;
el=ell;
dl=dll;
cl=el+dl;
pointer(1,t+1)=1
tau = tau+1;
beta=betah;

else
x (1, t+1) =x2 1;
el=e21;
dl=d21;
cl=el~dl;
tau=2;
pointer(l,t+1)=2;
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beta=betal;
end

if c22<c12
x(2,t+l)=x22;
e2=e22;
d2=d22;
c2=e2+d2;
pointer (2 ,t+l) =2;
beta=betal;

else
x(2,t+l)=x12;
e2=e12;
d2=d12;
c2=e2+d2;

beta=betah;
end

end

END MAIN LOOP

BACKWARDS SMOOTHING AND SUBSTITUTION

tau=1.O;

if cl<c2
out=1;

else
out=2;

end

y(sampsize)=x(out,sampsize);

for t=sampsize:-1:2

out=pointer ou,t
xout=x(out,t-1);

if out==2
tau=1.O;
y (t-1) =xout;

else
tau=tau+1;
y(t-1)=xout;

end

trans (k,t-l) =out;
C(k,:)=( y(2:length(y)) y(l)];

end
end
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% Normalize each row of C to 1 and
% clip the data to 10-(-6).

psnorm=normod(C,rows);
psnorm=clip(psnorm, 10^(-6));

% calculate the SPL of psnorm and store in M
M=loglO(psnorm).*10;

c. "Modified" Kalman Filter using Constant

% KALMAN1.M
% This program filters the array of desired periodograms
% of the time series data using a '. odified" kalman filter
% with a constant Beta. The entering arguments are;

- <file name> of PSD array
% - sample size
% - sigma (already calculated if data was generated
% using "KFILTER.M" program).
% - total number of (nem) points in the array (already
% calculated if "KFILTER.M" was used).
% - the kalman filter parameter "Beta"
% The subroutine outputs are;

M= periodogram of filter output in dB
C= periodogram of filter output in power

Define the function "KALMMl"

function [M,C]=kalmanl(psd,sampsize,sigma,totpts,beta)

KALMAN FILTER

x=zeros(2,sampsize);
pointer=zeros(2,sampsize);

sv2 sigma^2;

% create loop for the number of rows in psd
rows=totpts/sampsize;
for k=l:rows

y=psd(k,:);
el=0.0;
e2=O.0;

dl=0.0;
d2=0.O;

x(l,l)=y(1);
x(2,l)=y(l);
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tau=1.O0;

MAIN LOOP

for t=1: (sampsize-1);
kl=1.O/(tau+1.O);
xll=x(1,t)+kl*(y(t)-x(1,t));
dll=dl-beta;
ell=el+(1.O/(2.*sv2))*((y(t+1x)112)
cll=ell+dll;

k2=1. 0;

d12=dl+beta;
e12=el+(1.O/(2.O*sv2))*((y(t+lh-xl2)-

2 );
c12=e12+d12;

k1=0.5;
x21=x (2,t) +kl* (y (t) -x(2,t) )
d21=d2-beta;
e2l = e2+(1.0/(2.O*sv2))*((y(t+l)-x21)^

2 );
c21=e21+d21,

k2=1.0;
x22=x(2,t)+k2*(y(t)-x(2,t)) ;
d22=d2+beta;
e22=e2+(1.O/(2.O*sv2))*((y(t+1h-x22V2);
c22=e22+d22;

UPDATE STATES IN DYNAMIC PROGRAM.

if cll<c21
x(1,t+1)=xll;
el=ell;
dl=dll;
cl=el+dl;
pointer(1,t+l)1l
tau = tau+1;

else
x (1, t+1) =y(t);
el=e21;
dl=d2l;
cl=el+dl;
tau=2;
pointer(l,t+l)=2;

end

if c22<c12
x(2,t+1)=y(t);
e2=e22;
d2=d22;
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c2=e2+d2;
pointer (2,t+1) =2 ;

else
x(2,t+1)=X12;
e2=el2;
d2=d12;
c2=e2+d2;
pointer(2,t+1)=1;

end
end

END MAIN LOOP

BACKWARDS SMOOTHING AND SUBSTITUTION

tau=1.O;

if cl<c2
out=1;

else
out=2;

end

y(sampsize)=X(out,sampsize);

for t=saxnpsize:-1:2
out=pointer ou,t
xout=x(outt-1);

if out==2
tau=l.O;
y (t-1) =xout;

else
tau=tau+l;
y (t-1) =xout;

end

trans (k,t-l) =out;
C(k,:)=[ y(2:lengtl-.(y)) y(1));

end
end

% Normalize each row of C to 1 and
clip the data to lOA(-6).

psnorm=normod (C, rows);
psnorin=clip(psnorm, 10 (-6));

% calculate the SPL of psnorm and store in M
M=loglO(psnorm) .*1O;
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d. Kalman Filter using a Constant 6

% KALMAN.M
% This program filter the array of desired periodograms
% of the time series data using a kalman filter with a
% constant Beta. The entering arguments are;

- <file name> of PSD array
- sample size
- sigma (already calculated if data was generated
using "KFILTER.M" program).

- total number of (nem) points in the array (already
% calculated if "KFILTER.M" was used).

- the kalman filter parameter "Beta"
% The subroutine outputs are;

M= periodogram of filter output in dB
C= periodogram of filter output in power

% Define the function "KALMAN"
function [M,C]=kalman(psd,sampsize,sigma,totpts,beta)

% KALMAN FILTER

x=zeros(2,sampsize);
pointer=zeros(2,sampsize);

sv2=sigma^2;

% create loop for the number of rows in psd
rows=totpts/sampsize;
for k=l:rows

y=psd(k,:);
el=0.0;
e2=0.0;

dl=0.0;
d2=0.0;

x(l, 1)=y(1);
x (2, 1) =y (1)
tau=l.0;

MAIN LOOP

for t=l: (sampsize-1);
kl=l.0/(tau+l.0);
x11=x(l,t)+kl*(y(t)-x(1,t));
dll=dl-beta;
ell=el+(l.0/(2.0*sv2))*((y(t+l)-xll)A2);
cll=ell+dll;
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k2=1.O0;
x12=x(1,t)+k2*(y(t)-x(1,t));
d12=dl+beta;

c12=e12+d12;

k1=0.5;
x2l=x(2,t)+kl*(y(t)-x(2,t));
d2 1=d2 -beta;
e21 = e2+(1.O/(2.O*sv2))*((y(t+l)-x2l)^2);
c2l=e21+d2l;

k2=1.0;
x22=x(2,t)+k2*(y(t)-x(2,t));
d22=d2+beta;
e22=e2+(1.O/(2.O*sv2))*((y(t+l)-x22)"2);
c22=e22+d22;

UPDATE STATES IN DYNAMIC PROGRAM.

if cll<c21
x(l,t+l)=xll;
el=ell;
dl=dll;
cl=el+dl;
pointer(l,t+1)=1
tau = tau+l;

else
x(l,t+l)=x21;
el=e21;
dl=d21;
cl=el+dl;
tau=2;
pointer(1,t+1)=2;

end

if c22<c12
x(2,t+1)=x22;
e2=e22;
d2=d22;
c2=e2+d2;
pointer (2 ,t+1) =2;

else
x(2,t+1)=x12;
e2=e12;
d2=d12;
c2=e2+d2;
pointer(2,t+1)=l;

end
end
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% END MAIN LOOP

% BACKWARDS SMOOTHING AND SUBSTITUTION

tau=l.O;

if cl<c2
out=1;

else
out=2;

end

y(sampsize)=x(out,saUpsize);

for t=sampsize:-l:2
out=pointer (out, t);
xout=x(out,t-l);

if out==2
tau=l.O;
y (t-i) =xout;

else
tau=tau+1;
y(t-1) =xout;

end

trans (c, t-1) =out;
C(k,:)=[ y(2:length(y)) y(l)J;

end
end

% Normalize each row of C to 1 and
% clip the data to 1OA(-6).

psnorin=normod (C, rows);
psnorm=clip(psnorm, bA (-6));

% calculate the SPL of psnormn and store in M
M=loglO(psnorn) .*lO;

2. Supporting Matlab Code

a. Signal Generator

% KFILTER.M R.C. Adamo
%The purpose of this program is to connect all ap-
%propriate subroutines allowing the user to generate
% a single stationary frequency component test signal
% for processing. The user is prompted for;
% 1) Input frequency
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2) Sampling frequency
3) Sample size (Power of 2 please)
4) Signal length (Power of 2 please)
5) Input SNR

% The signal is processed in non-overlapping
% segments zero-padded to twice the sample size.
% The following subroutines are called;

1) PER.M
2) KALMOD1.M

% (KALMAN.M, KALMAN1.M AND KALMOD.M can also
% be used if desired. User must delete the
% "%" preceding the desired subroutine call-up
% in this program)
% After processing, the square of the magnitudes of the
% FFT's are saved in arrays of (signal length/sample
% size) rows by sample size columns as;

- rpsd.dat
% - hwpsd.dat
% - kpsd 2B mod.dat (if you modify this program to
% run the other kalman algorithms you must save
% that data manually)
% For a signal length of (128*128), allow 10 mins per Kalman
% filter utilized for total run time.

clear
% Input desired frequency

fl=input('Enter Signal freq less than 256 Hz ')

% Input sampling frequency
fs=input('Enter sampling freq ')

% Input sample size
size=input('Enter sample size (power of 2 pls) ')

% Input the number of points to be generated.
totpts=input('Enter total # of pts (power of 2 pls)')
no=0:1:(totpts-1);

% Input the desired SNR of this signal
snr=input('Enter SNR in dB ')
sigma=sqrt((10A(-snr/10))*.5)

% Generate sinusoid only
thetal=2*pi*fl*no;
yl=sin(thetal/fs);
ycomp=yl;

% Add Gaussian noise
rand('normal')
rand('seed',5)
ydirt=ycomp+sigma*rand(ycomp);
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% define beta parameters
bl=input('Enter desired filtering beta ')

% Call subroutines to compute rec,rpsd,h,hwpsd,kw,kwpsd
[rec,rpsd,h,hwpsd,freq]=per(ydirt,size,fs);

% [k_lB,kpsdlB]=kalman(rpsd,size,sigma,totpts,bl);
% [k_lB mod,kpsd lB mod]=kalmanl(rpsd,size,sigma,totpts,bl);
% [k2B,kpsd 2B]=kalmod(rpsd,size,sigma,totpts,bl);

[k_2B mod,kpsd_2B mod]=kalmodl(rpsd,size,sigma,totpts,bl);

save
save rpsd.dat rpsd /ascii
save hwpsd.dat hwpsd /ascii
save kpsd 2B mod.dat kpsd_2B mod /ascii

quit

b. Subroutine OPER.MN

% PER.M R.C. Adamo
% Compute the rectangular window and the hamming window
% periodograms and the frequency vector for the desired
% signal. The input arguments are signal name, the
% sample size of the transforms and the sampling frequency.
% The data segments are zero-padded to twice the sample
% size.
% The output data of the subroutine are:
% M=periodogram of unwindowed time series in dB
% B=periodogram of unwindowed time series in power
% C=periodogram of hamming windowed time series
% in dB
% D=periodogram of hamming windowed time series
% in power
% E=sampling frequency vector used for plotting
% individual periodograms.

% Define the function "PER"
function [M,B,C,D,E]=per(signal,sampsize,sampfreq)

rows=length(signal)/sampsize;
for k=l:rows

% zero pad sample size pt data sets to twice the sample
% size.

temp(l:sampsize)=signal((k-l)*sampsize+l:k*sampsize);
temp(sampsize+1:2*sampsize)=zeros(l:sampsize);

% Square the magnitude of the fft of the padded sequence
ztemp=(abs(fft(temp))).^2;

% Store the left half of ztemp as Matrix where
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Matrix is n by sample size matrix
B(k,:)=ztemp(l:sampsize);

clear temp ztemp
end

Normalize each row of B and call it psnorm
psnorm=normod(B,rows);

Clip psnorm to minimum value of 10^-6
psnorm=clip(psnorm, 10A(-6));

% calculate the SPL of psnorm and store in M
M=loglO(psnorm).*10;

[C,D]=hamm(signal,sampsize);
E=fvec(sampfreq,sampsize);

c. Hamming Window Subroutine

% HAMM.M R.C. Adamo
% Compute the periodogram of desired signal after applying
% a Hamming window to each time series data sample of
% defined sample size. The input arguments are the signal
% name and the transform sample size. The data segments are
% zero-padded to twice the sample size.
% The output data of the subroutine are:

M-periodogram of hamming windowed time series
in dB

B-periodogram of hamming windowed time series
in power

% Define the function "HAHN"
function [M,B)=hamm(signal,sampsize)

% Create hamming window of in-putted sample size
w=hamming(sampsize);

rows=length(signal)/sampsize;
for k=l:rows

% apply hamming window and zero pad data to twice the sample
% size.

temp(l:sampsize)=w'.*signal ((k-1) *sampsize+l:k*sampsize);
temp(sampsize+1:2*sampsize)=zeros(l:sampsize);

% Square the fft magnitude of the padded sequence
ztemp=(abs(fft(temp))).A2;
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% Store the left half of ztemp as Matrix where Matrix
% is n by sample size; n=totpts/sample size.

Matrix(k,:)=ztemp(l:sampsize);

clear temp ztemp
end

% Normalize eac, row of Matrix and call it psnorm
psnorm=normod(Matrix,rows);

B=Matrix;

% Clip psnorm to minimum value of 10--6
psnorm=clip(psnorm,10A(-6));

% Calculate the SPL of psnorm and store in M
M=logl0(psnorm).*10;

d. Subroutine NORMOD.Mw

% NORMOD.M R. C. Adamo
% This program normalizes a matrix such
% that the largest value in each row is
% 1 and the other values are scaled relative to 1.
% The entering arguments are the matrix name and
* the number of rows in the matrix.

% Define the function "NORMOD"
function M=normod(matrix,rows)

for k=l:rows
M(k,:)=(l/max(matrix(k,:))) * matrix(k,:);

end

e. Subroutine "CLIP.Me

% CLIP.M R.C.ADAMO
% This subroutine clips any matrix to some
% minimum value. The entering arguments are the
% matrix to be clipped and the minimum value the user
% wishes to clip it to.

% Define the function "CLIP"
function M=clip(matrixclip)

index = matrix < (clip);
corr = index * clip;
corfac = 1 - index;
adjust = corfac.*matrix;
M = corr + adjust;
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f. Subroutine ONORMAL.MH

% NORMAL.M R. C. Adamo
% This program normalizes a matrix such
% that the largest value in the matrix are
% 1 and the other values are scaled relative to 1.

% Define the function "NORMAL"

function M=normal (matrix)

M=(l/max (max (matrix))) *matrix;

g. Subroutine MFVEC.M"

% FVEC.M R.C. Adamo
% CREATE THE FREQUENCY VECTOR USED IN PLOTTING
% A PERIODOGRAM. fs IS THE SAMPLING FREQUENCY
% AND X IS THE SAMPLE SIZE.

function f=fvec (fs, x)

n=2*x;
f=fs* (O:n-l)/n;

h. Grey-tone imaging FORTRAN 77 Code

C LOFAR.F R. C.ADAMO
C This program reads and displays processed signals
C in a LOFAR presentation. It is used to compare
C the performances of different processing techniques.
C The user must edit this program to ensure input filedef
C is properly defined. Also this program must be edited to
C add a proper title on output.
C
C OPEN GKS, OPEN WORKSTATION OF TYPE 1, ACTIVATE WORKSTATION
C

CALL GOPKS (6,IDUM)
CALL GOPWK (1, 2, 1)
CALL GACWK (1)

C
C INVOKE DEMO DRIVER
C

call thafto(ierr)
C
C DEACTIVATE AND CLOSE WORKSTATION, CLOSE GKS.
C

CALL GDAWK (1)
CALL GCLWK (1)
CALL GCLKS
STOP
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END

SUBROUTINE THAFTO (IERROR)
C
C USAGE CALL THAFTO (IERROR)
C
C ARGUMENTS
C ON OUTPUT IERROR
C An integer variable
C = 0, if the test was successful,
C = 1, the test was not successful.
C
C I/O If the test is successful, the message
C HAFTON EXECUTED--SEE PLOTS TO CERTIFY
C is printed on unit 6. In addition, 1 half-tone
C frame is produced on the machine graphics
C device. In order to determine if the test
C was successful, it is necessary to examine
C the plot.
C
C PRECISION Single
C
C LANGUAGE FORTRAN 77
C
C REQUIRED ROUTINES HAFTON
C
C REQUIRED GKS LEVEL OA
C
C Z contains the values to be plotted.
C

REAL Z(128,128)
INTEGER ROWS, SIZE
SAVE

C
C Specify coordinates for plot titles. The values TX and TY
C define the center of the title string in a 0. to 1. range.
C

DATA TX/0.15/, TY/0.9469/
C
C Specify low (FLO) and high (FHI) contour values, and NLEV
C unique contour levels. NOPT determines how Z maps onto the
C intensities, and the directness of the napping.
C

DATA FLO/0.0/, FHI/0.0/, NLEV/1/, NOPT/1/
C
C Initialize the error indicator
C

IERROR = 0
C
C Define files to be read in.

open(1,file='rpsd.dat')
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C open(l,file='h snrcompl.dat')
C open(l,file='k_2Bmod_135k.dat')
C
C Input data array dimensions

print *, ' Enter array size as rows, column
read *, rows, size

C rows=128
C size=128

C Read in the desired data to be plotted
C

DO 20 I=l,rows
READ(I,*,END=999) (Z(J,I),J=l,size)

20 CONTINUE
C
C Select normalization trans 0 for plotting title.
C

CALL GSELNT (0)
C
C Call WTSTR to write the plot title.
C
C Plot upper title for output

CALL WTSTR (TX,TY,
1 'LOFAR GRAM; RECT WINDOW; Base SNR out=9
1 dB',2,0,-l)

C 1 'LOFAR GRAM; HAMM WINDOW; Base SNR out=9
C 1 dB',2,0,-l)
C 1 "LOFAR GRAM; "Mod" Kalman dynamic Beta=135k'
C 1 ,2,0,-1)
C
C Print frequency scale on output

CALL WTSTR (0.10,0.08,
1 '0 10 20 30

C 1 ',2,0,-l)
C

CALL WTSTR (0.40,0.055,
1 'frequency Hz',2,0,-1)

C
C Entry HAFTON allows user specification of plot parameters.
C

CALLHAFTON (Z,size,size,rows,FLO,FHI,NLEV,NOPT,0,0,0.)
CALL FRAME

C
WRITE (6,1001)
RETURN

1001 FORMAT (' HAFTON TEST EXECUTED--SEE PLOTS TO CERTIFY')
C

999 write(6,1111)
1111 format('unexpected end of file on input: program
C 1 terminated')

END

104



I.Subroutine ONAMES.MM

% NAMES.M R.C. Adamo
* Create the titles used f or the comparison plots

dBname=[sprintf('SNR=%g',snr) , dB,']
Betaname=sprintf( 'BETA=%g' ,bl)
freqname=[sprintf('freq=%g' ,f1) ,'Hz']
Rectitle=['REC Win, ',dsname,freqname)
HWtitle=[ 'HAM Win,' ,dBname,freqname]
Kaltitle=[ 'Mod Kal ,dynamic beta, ',Betaname]

r Kltitle =['Mod Kal, constant beta, ',Betaname]
K2title =['Kal Out,dynamic beta, ',Betaname]
K3title =['Kal Out, constant bet-- ,',Betaname]
Betahigh=sprintf('Beta high =%g',bl)

Betalow= sprintf('Beta low =%g',1)

j. Plotting Subroutine

* PLOTT.M R.C. Adamo
* This subroutine plots and compares the periodograms
* of the rectangular and Hamming windows and the Kalman
* filter outputs in dB. If other than the default

% kalman algorithm is used, the user must modify line 18
% of this program to plot the desired kalman output.
% This program must be run after executing the program
% "naves" in matlab.

for 1=1: l:totpts/size
clg

subplot (221)
plot(freg(l:size) ,rec(i,:))
title (Rectitle)
xlabel('frequency Hz')
ylabel( 'magnitude dB')
plot(freq(l:size) ,h(i,:))
title (HWtitle)
xlabel('frequency Hz')
ylabel ('magnitude dB')
plot(freq(1:sizo),k_2B-mod(i,:))
title (Kaltitle)
xlabel ('frequency Hz')
ylabel ('magnitude dB')
text(.60, .30,Betahigh, 'sc')
text(.60, .25,Betalow, 'sc')
text(.60,.20,sprintf('Noise realization %g',i),'sc')

pause
end
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APPENDIX B. PERFORMANCE RELATIVE TO SPECTRAL RESOLUTION

The ability of the Kalman filter to detect two components

at nearby spectral locations was examined. Three test cases

were evaluated to determine the minimum spectral separation

needed by the Kalman filter to distinguish between two

components. The same data sets were also processed using the

Hamming window for comparison.

All three test cases consisted of three sinusoidal

components in additive Gaussian noise. The frequencies in

test case 1 were 10.7 Hz, 11.2 Hz and 20.1 Hz at input SNRm of

-9 dB, -12 dB and -15 dB, respectively. This case provides a

2 bin separation between fl (10.7 Hz) and f2 (11.2 Hz). This

signal was processed using the Hamming window and the Kalman

("modified" dynamic f=135k) filter. Test frequencies in test

case 2 were 10.7 Hz, 11.45 Hz and 20.1 Hz at input SNR, of -9

dB, -12 dB and -15 dB (3 bin separation between fl and f2),

respectively. Finally, test frequencies in test case 3 were

10.7 Hz, 11.7 Hz and 20.1 Hz at input SNR, of -9 dB, -12 dB

and -15 dB (4 bin separation between fl and f2), respectively.

Figure 42 thru Figure 44 shows the LOFAR outputs for the

Hamming window and the Kalman ("modified" dynamic 0=135k) for

cases 1, 2 and 3, respectively. The mainlobe broadening of

the Hamming window over that of the Kalman filter is obvious
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in all three cases. In addition, the Kalman filter clearly

detects the distinct frequencies of fl and f2 in case 3 (4 bin

separation) where the Hamming window process can not. It is

difficult to pull out f3, the -15 dB SNRm component, using

either the Hamming or Kalman filter in any of the three cases.
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APPENDIX C. EFFECTS OF DYNAMIC SPECTRAL COMPONENTS

LOFAR outputs are extremely useful in providing the

additional processing gain needed to detect signal in noise at

SNRO. of 6 dB or less. Up to this point the experimental data

was comprised of stationary frequency components. It has been

demonstrated that the human eye is well suited to linearly

regress the data displayed via the LOFAR output for stationary

frequency components. The effects that dynamic spectral

components will have on this capability is examined in this

appendix. The time series data for this experiment was

generated with three frequency components. One component is

a stationary frequency of 20.45 Hz at an SNR, of -15 dB. The

second spectral component is a linear ramp frequency with an

SNR, of -12 dB starting at 11.45 Hz and ending at 31.45 Hz.

The third component is a dynamic component with an SNRW of -9

dB starting and ending at 15.7 Hz and completing one sine wave

cycle of amplitude of 2.5 Hz.

Figure 45 is the LOFAR output of this data filtered by the

Hamming window and the Kalman ("modified" dynamic f=135k)

filter. Both dynamic components are clearly visible in both

the Hamming and Kalman LOFAR outputs. LOFAR output allows the

humman eye to observe the structure of dynamic spectral

components at SNR's, down to low as 6 dB.
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APPENDIX D. LOFAR OUTPUT USERS GUIDE

A. USERS GUIDE

This appendix provides the computer code and the step-by-

step instructions necessary to produce a LOFAR output of any

array of data. The user is required to load the data of

interest into the same directory that the LOFAR code "image.f"

is using. The data file must be named "input.dat". When the

data is in place the following procedures should be followed:

i) For output to be displayed on the Sun workstation:

1. Rename data file to "input.dat".

2. At the prompt type "ncargf77 -o image image.f".
This compiles the program and names the executable
file "image".

3. At the prompt type "ncargrun -o image.cgm image".
This executes image and saves the LOFAR output as
"image.cgm"

4. The program prompts the user to input the number of
rows and number of columns in their data. At the
prompt type "(# of rows) <space> (# of columns)".
The program then reads in the data and builds the
LOFAR output.

5. At the prompt type "ctrans -d sunview image.cgm".
This translates the "image.cgm" to the appropriate
form for display on the Sun workstation.

ii) Hard copy LOFAR output

Once the procedures described above have been executed,

hard copy of the LOFAR output ("image.cgm") can be produced on
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the tektronix 4014 (tek4014) terminal in the computer 
lab Sp-

301 if desired. To obtain a hard copy output follow these

procedures:

1. Using the tek4014 terminal in Sp-301 log on to the

VAX and type "tek4014" at the prompt <term(vt200)>.

2. Remote logon to the DSP used to produce the LOFAR

output on. Again type "tek4014" at the

<term(vt200)> prompt.

3. Change to the directory where the LOFAR output file

"'image.cgm" resides.

4. Type "ctrans -d t4010 image.cgm".

5. It takes between 1-2 minutes to display the LOFAR

output on the tektronix. Once plotting is complete

a hard copy can be obtained by pressing the "copy

button" on the Tektronix 4631 Hard Copy Unit.

B. COMPUTER CODE

C IMAGE.F R.C.ADAMO
C This program reads and displays data sets of

C "n by mI" dimensions. The user must ensure the data

C is saved under the name of "INPUT.DAT". The user is

C prompted for the dimensions of the data set. The

C number of rows and columns must be integers.

C
C OPEN GKS, OPEN WORKSTATION OF TYPE 1, ACTIVATE WORKSTATION

C
CALL GOPKS (6,IDUM)
CALL GOPWK (1, 2, 1)
CALL GACWK (1)

C

C INVOKE DEMO DRIVER
C

call thafto(ierr)
C
C DEACTIVATE AND CLOSE WORKSTATION, CLOSE GKS.

C
CALL GDAWK (1)
CALL GCLWK (1)
CALL GCLKS
STOP
END
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SUBROUTINE THAFTO (IERROR)
C
C
C
C USAGE CALL THAFTO (IERROR)
C
C ARGUMENTS
C ON OUTPUT IERROR
C An integer variable
C = 0, if the test was successful,
C = 1, the test was not successful.
C
C I/O If the test is successful, the message
C HAFTON EXECUTED--SEE PLOTS TO CERTIFY
C
C is printed on unit 6. In addition, 1 half-tone
C frame is produced on the machine graphics
C device. In order to determine if the test
C was successful, it is necessary to examine
C the plot.
C
C PRECISION Single
C
C LANGUAGE FORTRAN 77
C
C REQUIRED ROUTINES HAFTON
C
C REQUIRED GKS LEVEL OA
C
C
C Z contains the values to be plotted.
C

REAL Z(128,128)
INTEGER ROWS, SIZE
SAVE

C
C Specify coordinates for plot titles. The values TX and TY
C define the center of the title string in a 0. to 1. range.
C

DATA TX/0.15/, TY/0.9469/
C
C Specify low (FLO) and high (FHI) contour values, and NLEV
C unique contour levels. NOPT determines how Z maps onto the
C intensities, and the directness of the mapping. Execute
C "man HAFTON" for a detailed description of these variables.
C

DATA FLO/0.0/, FHI/0.0/, NLEV/I/, NOPT/1/
C
C Initialize the error indicator
C

IERROR - 0
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C
C Define file to be read in.

open(l,file='input.dat')
C
C
C Is data file called INPUT.DAT?

print * ' Is your data file named INPUT.DAT?'
print * ' Enter 1 for yes and
print * ' 2 for no.'
print* '

print * ' If you answer no the program will
print * ' terminate. Rename file and try again.'
read *, k
if (k.eq.2) go to 991

C Input data array demensions
print *, ' Enter array size as rows, column
read *, rows, size

C Read in the desired data to be plotted
C

DO 20 I=1,rows
READ(I,*,END=999) (Z(J,I),J=1,size)

20 CONTINUE
C
C Select normalization trans 0 for plotting title.
C

CALL GSELNT (0)
C
C
C
C Call WTSTR to write the plot title.
C

CALL WTSTR (TX,TY,
1 'Your Plot tilte goes here',2,0,-1)
CALL WTSTR (0.15,0.08,
1 'Scale data could go here',2,0,-l)

C
C
C Entry HAFTON allows user specification of plot parameters.
C

CALL HAFTON (Z,size,size,rows,FLO,FHI,NLEV,NOPT, 0,0,0.)
CALL FRAME

C
WRITE (6,1001)
RETURN

C
1001 FORMAT (' HAFTON TEST EXECUTED--SEE PLOTS TO CERTIFY')

C
999 write(6,111)

1111 format('unexpected end of file on input: program
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1 terminated')
go to 9999

991 print *, 'rename input file to INPUT.DAT and try again'
9999 END
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